TeleportDAO 和 Eigen Labs 于近日联合发表了一篇论文,重点关注了轻节点在权益证明(PoS)区块链中访问和验证链上数据时面临的安全和效率挑战。该论文提出了一种新的解决方案,通过经济激励和有保险的预安全机制,以及客制化“可编程安全”性和具有成本效益等一系列措施来确保 PoS 区块链中轻节点的安全性和效率。十分具有前瞻性,值得深入研究。注:Eigen Labs 是 Restaking 协议 EigenLayer 和 EigenDA 的背后开发商,Eigen Labs 目前已从 a16z、Polychain、Blockchain Capital 等著名风投机构募集了超过 1 亿 5 千万美金。TeleportDAO 位于加拿大温哥华,是一家专注于比特币和 EVM 公链之间的跨链通信基础设施项目,目前该协议已通过 Coinlist 进行了一轮公开发售和融资成功筹集了 900 万美元。此轮融资得到了包括 Appworks、OIG Capital、DefinanceX、Oak Grove Ventures、Candaq Ventures、TON、Across 和 bitSmiley 在内的多家投资者的参与。
目前来说,在 PoS 区块链中,验证者通过锁定一定数量的质押(如以太坊中的 32 ETH)来参与共识网络,从而确保网络安全。因此,PoS 区块链安全的本质是由经济保护的,即总质押越大,攻击共识网络所需的成本或损失就越大。执行这种罚没机制依赖于一种称为“问责安全”的功能,即如果验证者签署了相互冲突的状态,就可以罚没质押。全节点在维护 PoS 区块链完整性方面发挥着至关重要的作用。它们存储所有区块交易信息、验证共识签名、复制完整的交易历史副本,并执行状态更新。这些过程需要大量计算资源和复杂的硬件。例如,运行一个完整的以太坊节点需要至少 2 TB 的固态硬盘存储。相比之下,轻节点减少了计算资源需求,只存储区块头,所以应用上也只适用于验证特定交易/状态的场景,如移动端钱包和跨链桥。另外,轻节点在验证交易时依赖全节点提供区块信息,但目前的节点服务商市场份额较为集中,因此安全性、独立性和即时性都无法完全保障。因此本文探讨了轻节点实现最佳安全性下,在数据获取成本和延迟之间的权衡方案。
比特币引入了简单支付验证(SPV)作为其轻节点协议。SPV 使轻节点能够使用 Merkle Proof 和区块头来验证特定区块中是否包含交易。因此,轻节点只需下载区块链的区块头,就可以通过检查区块的深度来验证交易的最终性。在这种情况下,比特币中轻节点验证共识的计算成本相对较低。然而在以太坊这样的 PoS 区块链中,共识检查的设计本质上更为复杂。它涉及维护整个验证者集,跟踪他们的质押变化,以及为共识网络执行许多签名检查。另一方面,PoW 轻节点的安全性依赖于大多数完整节点都是诚实的这一假设。为解决SPV的局限性,FlyClient 和非交互式工作证明(NiPoPoW)以亚线性(sublinear)成本向客户端证明这些区块。然而,他们对 PoS 共识模型的适用性弱。
相比之下,PoS 区块链通过罚没机制获得安全性。该系统依赖于共识参与者皆为理性,即攻击成本超过任何潜在利润,则不会攻击网络。为了降低验证成本,以太坊当前的轻节点协议依赖于同步委员会(sync committee),该委员会由 512 个随机选择的以太坊验证者组成,每个验证者质押 32 个以太坊,但签名过程不会被罚没。这种不可罚没的设计存在重大安全缺陷,同步委员会中不诚实的签名可能会误导轻节点接受无效数据,并且不会受到任何惩罚。即使引入罚没机制,同步委员会的总质押与庞大的以太坊验证者池相比仍然很少(截至 2024 年 3 月,以太坊验证者的数量已超过 100 万)。因此,这种方法为轻节点提供的安全性无法等价于以太坊验证者集。该模型代表了理性设置下多方计算的一种特殊变体,但无法提供基于经济的保障,也无法解决恶意、非理性数据提供者带来的威胁。
为了解决 PoS 引导过程中的安全和效率挑战,PoPoS 引入了一种分段博弈,以有效挑战 PoS 时序的对抗性 Merkle 树。虽然它们实现了最小空间,并避免了要求客户端始终在线和保持质押,但使客户端能够在重新加入网络不产生大量成本的情况下离线的问题仍未得到解决。
另一种研究方法侧重于使用零知识证明来创建简洁的证明。例如,Mina 和 Plumo 通过使用递归 SNARK 组合和基于 SNARK 的状态转换证明,有效促进了轻量级共识验证。然而,这些方法给区块生产者生成证明带来了相当大的计算负担,而且它们没有解决轻节点潜在损失的补偿问题。在其他 PoS 协议(如 Cosmos 中使用的 Tendermint 协议)的背景下,轻节点的作用在其区块链间通信(IBC)协议中进行了探讨。但这些实现是针对其各自生态的,并不直接适用于以太坊或其他各种 PoS 区块链。
大体上来说新方案引入了经济安全模块以实现“可编程性安全”,轻节点可根据自身安全需求以决定不同方案设计。在安全性假设上基本服从 1/N + 1/M,即只要保证全节点和检察官网络各有一个诚实有效的节点即可保证网络正常运行。
方案一主要通过提出挑战期与检察官网络实现数据可信性。简单来说,轻节点会在收到提供商签署过的数据后,将这部分的数据发给检察官网络审查,在一段期限内,如出现数据作假,检察官会提醒轻节点数据不可信,智能合约的罚没模块会罚没对于数据提供商的质押代币,反之,轻节点可以相信这些数据的可信性。轻节点请求数据具体流程:
其他要点:
评估:
方案二在方案一的基础上通过提出保险机制实现数据快速确认。简单来说,轻节点根据保单金额与时长确定保险后,数据提供商部分/全部的质押可以被偿还轻节点后续因数据做恶而产生的损失,因此轻节点收到并验证提供商提供的数据签名后,便可以确定该数据的初始可信性。轻节点请求数据具体流程:
其他要点:
评估:
第一,在轻节点计算效率上,轻节点两个方案中都体现了毫秒级别的验证效率(轻节点只需要对数据进行一次验证)。第二,在轻节点延迟上,按照实验配置的不同情境下(下图),延迟都在毫秒级别。值得注意的是延迟会根据数据提供商的数量线性增加,但延迟始终在毫秒级别。另外,方案一由于轻节点需要等候挑战期结果,所以延迟都在 5 小时。如果检查者网络足够可靠高效,那么这个 5 小时的延迟也是可以大幅减少的。
第三,在轻节点成本上,实际情况来看,轻节点的成本有二:gas fee 和保费,都会因为保单金额增加而增加。另外,对于检查者来说,他们递交数据时所涉及的 gas 会以罚没金额偿还,以保证有足够的参与激励。
注:Proposed 的区块会最后被 finalized 或者成为 uncle block。
本文提出的轻节点方案提供了“可编程性安全”以符合不同情况下的安全需求。方案一以更高延迟换取高安全性,而方案二通过引入保险机制为轻节点提供了“即时确认”服务。这些方案可用于需要确认交易最终性的场景,比如原子交易、跨链。
TeleportDAO 和 Eigen Labs 于近日联合发表了一篇论文,重点关注了轻节点在权益证明(PoS)区块链中访问和验证链上数据时面临的安全和效率挑战。该论文提出了一种新的解决方案,通过经济激励和有保险的预安全机制,以及客制化“可编程安全”性和具有成本效益等一系列措施来确保 PoS 区块链中轻节点的安全性和效率。十分具有前瞻性,值得深入研究。注:Eigen Labs 是 Restaking 协议 EigenLayer 和 EigenDA 的背后开发商,Eigen Labs 目前已从 a16z、Polychain、Blockchain Capital 等著名风投机构募集了超过 1 亿 5 千万美金。TeleportDAO 位于加拿大温哥华,是一家专注于比特币和 EVM 公链之间的跨链通信基础设施项目,目前该协议已通过 Coinlist 进行了一轮公开发售和融资成功筹集了 900 万美元。此轮融资得到了包括 Appworks、OIG Capital、DefinanceX、Oak Grove Ventures、Candaq Ventures、TON、Across 和 bitSmiley 在内的多家投资者的参与。
目前来说,在 PoS 区块链中,验证者通过锁定一定数量的质押(如以太坊中的 32 ETH)来参与共识网络,从而确保网络安全。因此,PoS 区块链安全的本质是由经济保护的,即总质押越大,攻击共识网络所需的成本或损失就越大。执行这种罚没机制依赖于一种称为“问责安全”的功能,即如果验证者签署了相互冲突的状态,就可以罚没质押。全节点在维护 PoS 区块链完整性方面发挥着至关重要的作用。它们存储所有区块交易信息、验证共识签名、复制完整的交易历史副本,并执行状态更新。这些过程需要大量计算资源和复杂的硬件。例如,运行一个完整的以太坊节点需要至少 2 TB 的固态硬盘存储。相比之下,轻节点减少了计算资源需求,只存储区块头,所以应用上也只适用于验证特定交易/状态的场景,如移动端钱包和跨链桥。另外,轻节点在验证交易时依赖全节点提供区块信息,但目前的节点服务商市场份额较为集中,因此安全性、独立性和即时性都无法完全保障。因此本文探讨了轻节点实现最佳安全性下,在数据获取成本和延迟之间的权衡方案。
比特币引入了简单支付验证(SPV)作为其轻节点协议。SPV 使轻节点能够使用 Merkle Proof 和区块头来验证特定区块中是否包含交易。因此,轻节点只需下载区块链的区块头,就可以通过检查区块的深度来验证交易的最终性。在这种情况下,比特币中轻节点验证共识的计算成本相对较低。然而在以太坊这样的 PoS 区块链中,共识检查的设计本质上更为复杂。它涉及维护整个验证者集,跟踪他们的质押变化,以及为共识网络执行许多签名检查。另一方面,PoW 轻节点的安全性依赖于大多数完整节点都是诚实的这一假设。为解决SPV的局限性,FlyClient 和非交互式工作证明(NiPoPoW)以亚线性(sublinear)成本向客户端证明这些区块。然而,他们对 PoS 共识模型的适用性弱。
相比之下,PoS 区块链通过罚没机制获得安全性。该系统依赖于共识参与者皆为理性,即攻击成本超过任何潜在利润,则不会攻击网络。为了降低验证成本,以太坊当前的轻节点协议依赖于同步委员会(sync committee),该委员会由 512 个随机选择的以太坊验证者组成,每个验证者质押 32 个以太坊,但签名过程不会被罚没。这种不可罚没的设计存在重大安全缺陷,同步委员会中不诚实的签名可能会误导轻节点接受无效数据,并且不会受到任何惩罚。即使引入罚没机制,同步委员会的总质押与庞大的以太坊验证者池相比仍然很少(截至 2024 年 3 月,以太坊验证者的数量已超过 100 万)。因此,这种方法为轻节点提供的安全性无法等价于以太坊验证者集。该模型代表了理性设置下多方计算的一种特殊变体,但无法提供基于经济的保障,也无法解决恶意、非理性数据提供者带来的威胁。
为了解决 PoS 引导过程中的安全和效率挑战,PoPoS 引入了一种分段博弈,以有效挑战 PoS 时序的对抗性 Merkle 树。虽然它们实现了最小空间,并避免了要求客户端始终在线和保持质押,但使客户端能够在重新加入网络不产生大量成本的情况下离线的问题仍未得到解决。
另一种研究方法侧重于使用零知识证明来创建简洁的证明。例如,Mina 和 Plumo 通过使用递归 SNARK 组合和基于 SNARK 的状态转换证明,有效促进了轻量级共识验证。然而,这些方法给区块生产者生成证明带来了相当大的计算负担,而且它们没有解决轻节点潜在损失的补偿问题。在其他 PoS 协议(如 Cosmos 中使用的 Tendermint 协议)的背景下,轻节点的作用在其区块链间通信(IBC)协议中进行了探讨。但这些实现是针对其各自生态的,并不直接适用于以太坊或其他各种 PoS 区块链。
大体上来说新方案引入了经济安全模块以实现“可编程性安全”,轻节点可根据自身安全需求以决定不同方案设计。在安全性假设上基本服从 1/N + 1/M,即只要保证全节点和检察官网络各有一个诚实有效的节点即可保证网络正常运行。
方案一主要通过提出挑战期与检察官网络实现数据可信性。简单来说,轻节点会在收到提供商签署过的数据后,将这部分的数据发给检察官网络审查,在一段期限内,如出现数据作假,检察官会提醒轻节点数据不可信,智能合约的罚没模块会罚没对于数据提供商的质押代币,反之,轻节点可以相信这些数据的可信性。轻节点请求数据具体流程:
其他要点:
评估:
方案二在方案一的基础上通过提出保险机制实现数据快速确认。简单来说,轻节点根据保单金额与时长确定保险后,数据提供商部分/全部的质押可以被偿还轻节点后续因数据做恶而产生的损失,因此轻节点收到并验证提供商提供的数据签名后,便可以确定该数据的初始可信性。轻节点请求数据具体流程:
其他要点:
评估:
第一,在轻节点计算效率上,轻节点两个方案中都体现了毫秒级别的验证效率(轻节点只需要对数据进行一次验证)。第二,在轻节点延迟上,按照实验配置的不同情境下(下图),延迟都在毫秒级别。值得注意的是延迟会根据数据提供商的数量线性增加,但延迟始终在毫秒级别。另外,方案一由于轻节点需要等候挑战期结果,所以延迟都在 5 小时。如果检查者网络足够可靠高效,那么这个 5 小时的延迟也是可以大幅减少的。
第三,在轻节点成本上,实际情况来看,轻节点的成本有二:gas fee 和保费,都会因为保单金额增加而增加。另外,对于检查者来说,他们递交数据时所涉及的 gas 会以罚没金额偿还,以保证有足够的参与激励。
注:Proposed 的区块会最后被 finalized 或者成为 uncle block。
本文提出的轻节点方案提供了“可编程性安全”以符合不同情况下的安全需求。方案一以更高延迟换取高安全性,而方案二通过引入保险机制为轻节点提供了“即时确认”服务。这些方案可用于需要确认交易最终性的场景,比如原子交易、跨链。