5月23日,芯片巨头英伟达发布了2025财年第一季度财报。财报显示,英伟达第一季度营收为260亿美元。其中,数据中心营收较去年增长427%,达到惊人的226亿美元。英伟达能够凭借一己之力拯救美股大盘的财务表现背后,反映的是全球科技公司为了角逐AI赛道而爆发的算力需求。越是顶尖的科技公司在AI赛道布局的野心越大,相应的,这些公司对于算力的需求也呈指数级增长。根据TrendForce的预测,2024年美国四大主要云服务提供商:微软、谷歌、AWS和Meta的对于高端AI服务器的需求预计分别将占全球需求的20.2%、16.6%、16%和10.8%,总计超60%。
图片来源: https://investor.nvidia.com/financial-info/financial-reports/default.aspx
“芯片紧缺“连续成为近几年的年度热词。一方面,大语言模型(LLM)的training和inference需要大量算力支撑;并且随着模型的迭代,算力成本和需求呈指数级增加。另一方面,像Meta这样的大公司会采购巨量的芯片,全球的算力资源都向这些科技巨头倾斜,使得小型企业越来越难以获得所需的算力资源。小型企业面临的困境不仅来自于激增的需求导致的芯片供给不足,还来自于供给的结构性矛盾。目前,在供给端仍存在着大量闲置的GPU,比如,一些数据中心存在大量闲置的算力(使用率仅在12% – 18%),加密挖矿中由于利润的减少也闲置出来大量的算力资源。虽然这些算力并非都适合AI训练等专业的应用场景,但消费级硬件在其他领域,如AI inference、云游戏渲染、云手机等领域仍然可以发挥巨大作用。整合并利用这部分算力资源的机会是巨大的。
把视线从AI转到crypto,在加密市场沉寂了三年之后,终于又迎来了又一轮牛市,比特币价格屡创新高,各种memecoin层出不穷。虽然AI和Crypto作为buzzword火了这些年,但人工智能和区块链作为两项重要技术仿佛两条平行线,迟迟没有找到一个“交点”。今年年初,Vitalik发表了一篇名为“The promise and challenges of crypto + AI applications” 的文章,讨论了未来AI和crypto相结合的场景。Vitalik在文中提到了很多的畅想,包括利用区块链和MPC等加密技术对AI进行去中心化的training和inference,可以将machine learning的黑箱打开,从而让AI model更加trustless等等。这些愿景若要实现还有很长一段路要走。但其中Vitalik提到的其中一个用例——利用crypto的经济激励来赋能AI,也是一个重要且在短时间内可以实现的一个方向。去中心化算力网络便是现阶段AI + crypto最合适的场景之一。
目前,已经有不少项目在去中心化算力网络的赛道上发展。这些项目的底层逻辑是相似的,可以概括为: 利用token激励算力持有者参与网络提供算力服务,这些零散的算力资源可以汇集成有一定规模的去中心化算力网络。这样既能提高闲置算力的利用率,又能以更低的成本满足客户的算力需求,实现买方卖方双方的共赢。
为了使读者在短时间内获得对此赛道的整体把握,本文将从微观—宏观两个视角对具体的项目和整个赛道进行解构,旨在为读者提供分析视角去理解每个项目的核心竞争优势以及去中心化算力赛道整体的发展情况。笔者将介绍并分析五个项目: Aethir、io.net、Render Network、Akash Network、Gensyn,并对项目情况和赛道发展进行总结和评价。
从分析框架而言,如果聚焦于一个具体的去中心化算力网络,我们可以将其拆解成四个核心的构成部分:
如果鸟瞰整个去中心化算力赛道,Blockworks Research的研报提供了一个很好的分析框架,我们可以将此赛道的项目position分为三个不同的layer。
图片来源: Youbi Capital
根据以上两个分析框架,我们将对选取的五个项目做一个横向的对比,并从四个层面——核心业务、市场定位、硬件设施和财务表现对其进行评价。
从底层逻辑来讲,去中心化算力网络是高度同质化的,即利用token激励闲置算力持有者提供算力服务。围绕这个底层逻辑,我们可以从三个方面的差异来理解项目核心业务的不同:
闲置算力的来源:
算力消费者
对于项目的定位来讲,bare metal layer、orchestration layer和aggregation layer需要解决的核心问题、优化重点和价值捕获的能力不同。
AI的爆发式增长带来的对于算力的巨量需求是毋庸置疑的。自 2012 年以来,人工智能训练任务中使用的算力正呈指数级增长,其目前速度为每3.5个月翻一倍(相比之下,摩尔定律是每18个月翻倍)。自2012 年以来,人们对于算力的需求增长了超过300,000倍,远超摩尔定律的12倍增长。据预测,GPU市场预计将在未来五年内以32%的年复合增长率增长至超过2000亿美元。AMD的估计更高,公司预计到2027年GPU芯片市场将达到4000亿美元。
图片来源: https://www.stateof.ai/
因为人工智能和其他计算密集型工作负载(如AR/VR渲染)的爆发性增长暴露了传统云计算和领先计算市场中的结构性低效问题。理论上去中心化算力网络能够通过利用分布式闲置计算资源,提供更灵活、低成本和高效的解决方案,从而满足市场对计算资源的巨大需求。因此,crypto与AI的结合有着巨大的市场潜力,但同时也面临与传统企业激烈的竞争、高进入门槛和复杂的市场环境。总的来说,纵观所有crypto赛道,去中心化算力网络是加密领域中最有希望获得真实需求的的垂直领域之一。
图片来源: https://vitalik.eth.limo/general/2024/01/30/cryptoai.html
前途是光明的,道路是曲折的。想要达到上述的愿景,我们还需要解决众多的问题与挑战,总结来说:现阶段如果单纯提供传统的云服务,项目的profit margin很小。从需求侧来分析,大型企业一般会自建算力,纯C端开发者大多会选择云服务,真正使用去中心化算力网络资源的中小型企业是否会有稳定需求还需要进一步挖掘和验证。另一方面,AI是一个拥有极高上限和想象空间的广阔市场,为了更广阔的市场,未来去中心化算力服务商也需要向模型/AI服务进行转型,探索更多的crypto + AI的使用场景,扩大项目能够创造的价值。但目前来说,想要进一步发展到AI领域还存在很多问题和挑战:
从最现实的角度考虑,一个去中心化算力网络需要同时兼顾当下的需求发掘和未来的市场空间。找准产品定位和目标客群,比如先瞄准非AI或者Web3原生项目,从比较边缘的需求入手,建立起早期的用户基础。同时,不断探索AI与crypto结合的各种场景,探索技术前沿,实现服务的转型升级。
https://vitalik.eth.limo/general/2024/01/30/cryptoai.html
https://foresightnews.pro/article/detail/34368
https://research.web3caff.com/zh/archives/17351?ref=1554
本文转载自[Youbi Capital],著作权归属原作者[Youbi],如对转载有异议,请联系Gate Learn团队,团队会根据相关流程尽速处理。
免责声明:本文所表达的观点和意见仅代表作者个人观点,不构成任何投资建议。
文章其他语言版本由Gate Learn团队翻译, 在未提及Gate.io的情况下不得复制、传播或抄袭经翻译文章。
Share
5月23日,芯片巨头英伟达发布了2025财年第一季度财报。财报显示,英伟达第一季度营收为260亿美元。其中,数据中心营收较去年增长427%,达到惊人的226亿美元。英伟达能够凭借一己之力拯救美股大盘的财务表现背后,反映的是全球科技公司为了角逐AI赛道而爆发的算力需求。越是顶尖的科技公司在AI赛道布局的野心越大,相应的,这些公司对于算力的需求也呈指数级增长。根据TrendForce的预测,2024年美国四大主要云服务提供商:微软、谷歌、AWS和Meta的对于高端AI服务器的需求预计分别将占全球需求的20.2%、16.6%、16%和10.8%,总计超60%。
图片来源: https://investor.nvidia.com/financial-info/financial-reports/default.aspx
“芯片紧缺“连续成为近几年的年度热词。一方面,大语言模型(LLM)的training和inference需要大量算力支撑;并且随着模型的迭代,算力成本和需求呈指数级增加。另一方面,像Meta这样的大公司会采购巨量的芯片,全球的算力资源都向这些科技巨头倾斜,使得小型企业越来越难以获得所需的算力资源。小型企业面临的困境不仅来自于激增的需求导致的芯片供给不足,还来自于供给的结构性矛盾。目前,在供给端仍存在着大量闲置的GPU,比如,一些数据中心存在大量闲置的算力(使用率仅在12% – 18%),加密挖矿中由于利润的减少也闲置出来大量的算力资源。虽然这些算力并非都适合AI训练等专业的应用场景,但消费级硬件在其他领域,如AI inference、云游戏渲染、云手机等领域仍然可以发挥巨大作用。整合并利用这部分算力资源的机会是巨大的。
把视线从AI转到crypto,在加密市场沉寂了三年之后,终于又迎来了又一轮牛市,比特币价格屡创新高,各种memecoin层出不穷。虽然AI和Crypto作为buzzword火了这些年,但人工智能和区块链作为两项重要技术仿佛两条平行线,迟迟没有找到一个“交点”。今年年初,Vitalik发表了一篇名为“The promise and challenges of crypto + AI applications” 的文章,讨论了未来AI和crypto相结合的场景。Vitalik在文中提到了很多的畅想,包括利用区块链和MPC等加密技术对AI进行去中心化的training和inference,可以将machine learning的黑箱打开,从而让AI model更加trustless等等。这些愿景若要实现还有很长一段路要走。但其中Vitalik提到的其中一个用例——利用crypto的经济激励来赋能AI,也是一个重要且在短时间内可以实现的一个方向。去中心化算力网络便是现阶段AI + crypto最合适的场景之一。
目前,已经有不少项目在去中心化算力网络的赛道上发展。这些项目的底层逻辑是相似的,可以概括为: 利用token激励算力持有者参与网络提供算力服务,这些零散的算力资源可以汇集成有一定规模的去中心化算力网络。这样既能提高闲置算力的利用率,又能以更低的成本满足客户的算力需求,实现买方卖方双方的共赢。
为了使读者在短时间内获得对此赛道的整体把握,本文将从微观—宏观两个视角对具体的项目和整个赛道进行解构,旨在为读者提供分析视角去理解每个项目的核心竞争优势以及去中心化算力赛道整体的发展情况。笔者将介绍并分析五个项目: Aethir、io.net、Render Network、Akash Network、Gensyn,并对项目情况和赛道发展进行总结和评价。
从分析框架而言,如果聚焦于一个具体的去中心化算力网络,我们可以将其拆解成四个核心的构成部分:
如果鸟瞰整个去中心化算力赛道,Blockworks Research的研报提供了一个很好的分析框架,我们可以将此赛道的项目position分为三个不同的layer。
图片来源: Youbi Capital
根据以上两个分析框架,我们将对选取的五个项目做一个横向的对比,并从四个层面——核心业务、市场定位、硬件设施和财务表现对其进行评价。
从底层逻辑来讲,去中心化算力网络是高度同质化的,即利用token激励闲置算力持有者提供算力服务。围绕这个底层逻辑,我们可以从三个方面的差异来理解项目核心业务的不同:
闲置算力的来源:
算力消费者
对于项目的定位来讲,bare metal layer、orchestration layer和aggregation layer需要解决的核心问题、优化重点和价值捕获的能力不同。
AI的爆发式增长带来的对于算力的巨量需求是毋庸置疑的。自 2012 年以来,人工智能训练任务中使用的算力正呈指数级增长,其目前速度为每3.5个月翻一倍(相比之下,摩尔定律是每18个月翻倍)。自2012 年以来,人们对于算力的需求增长了超过300,000倍,远超摩尔定律的12倍增长。据预测,GPU市场预计将在未来五年内以32%的年复合增长率增长至超过2000亿美元。AMD的估计更高,公司预计到2027年GPU芯片市场将达到4000亿美元。
图片来源: https://www.stateof.ai/
因为人工智能和其他计算密集型工作负载(如AR/VR渲染)的爆发性增长暴露了传统云计算和领先计算市场中的结构性低效问题。理论上去中心化算力网络能够通过利用分布式闲置计算资源,提供更灵活、低成本和高效的解决方案,从而满足市场对计算资源的巨大需求。因此,crypto与AI的结合有着巨大的市场潜力,但同时也面临与传统企业激烈的竞争、高进入门槛和复杂的市场环境。总的来说,纵观所有crypto赛道,去中心化算力网络是加密领域中最有希望获得真实需求的的垂直领域之一。
图片来源: https://vitalik.eth.limo/general/2024/01/30/cryptoai.html
前途是光明的,道路是曲折的。想要达到上述的愿景,我们还需要解决众多的问题与挑战,总结来说:现阶段如果单纯提供传统的云服务,项目的profit margin很小。从需求侧来分析,大型企业一般会自建算力,纯C端开发者大多会选择云服务,真正使用去中心化算力网络资源的中小型企业是否会有稳定需求还需要进一步挖掘和验证。另一方面,AI是一个拥有极高上限和想象空间的广阔市场,为了更广阔的市场,未来去中心化算力服务商也需要向模型/AI服务进行转型,探索更多的crypto + AI的使用场景,扩大项目能够创造的价值。但目前来说,想要进一步发展到AI领域还存在很多问题和挑战:
从最现实的角度考虑,一个去中心化算力网络需要同时兼顾当下的需求发掘和未来的市场空间。找准产品定位和目标客群,比如先瞄准非AI或者Web3原生项目,从比较边缘的需求入手,建立起早期的用户基础。同时,不断探索AI与crypto结合的各种场景,探索技术前沿,实现服务的转型升级。
https://vitalik.eth.limo/general/2024/01/30/cryptoai.html
https://foresightnews.pro/article/detail/34368
https://research.web3caff.com/zh/archives/17351?ref=1554
本文转载自[Youbi Capital],著作权归属原作者[Youbi],如对转载有异议,请联系Gate Learn团队,团队会根据相关流程尽速处理。
免责声明:本文所表达的观点和意见仅代表作者个人观点,不构成任何投资建议。
文章其他语言版本由Gate Learn团队翻译, 在未提及Gate.io的情况下不得复制、传播或抄袭经翻译文章。